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Abstract—The present study deals with the non-linear creep behavior of floating ice beams under
lateral loads. The influence of the variability of Young’s modulus across the beam thickness and
time hardening in the power-type creep constitutive relation on the deflections and stresses of ice
beams are considered. The resulting governing differential equation is solved using the central finite
difference method while time integration is performed using Euler’s integration scheme with a
variable time step. Time hardening is found to increase the deflections and in general, further relax
the stresses. Unlike the homogeneous beam, the stresses in a non-homogeneous beam may initially
increase and then relax with time. The analysis takes into account the shift of the neutral axis of
the beam as a function of time using small deflection beam theory.

1. INTRODUCTION

Floating ice sheets are often used for the transportation and storage of heavy vehicles and
equipment in cold regions (e.g. Saint Lawrence River, Canada, and in Lake Lagoda near
Leningrad, U.S.S.R.). The oil and gas exploration activities in the Arctic region have
considerably increased the interest in the bearing capacity of floating ice covers as drilling
platforms and layout of marine pipelines. The existing analytical and experimental data for
the determination of the bearing capacity of laterally loaded floating ice plates have been
thoroughly reviewed by Kerr (1976). Excellent summaries of the bearing capacity of ice
and the associated failure criteria were presented by Michel (1978). The influence of rate
of loading, temperature and brine volume of ice on its flexural strength as well as a
comprehensive review of the viscoelastic properties and elastic modulus of ice were examined
by Mellor (1983). A number of excellent Ph.D. theses on the bearing capacity of ice were
written by Palmer (1971), Mohaghegh (1972), Nevel (1976), Murat (1978a, b) and Hamza
(1981). Interesting papers on the above subject can be found in annual conferences (such
as OMAE edited by Lunardini (1984), POAC edited by Jumppanen (1983), IAHR edited
by Carstens (1984) and Offshore Technology Conference at Houston). A number of com-
prehensive reports were written by Panfilov (1960), Weeks and Assur (1966), Nevel (1976),
Vaudrey (1977) and Lainey (1981), among others. Thus, there exists a very large number
of publications on the mechanical behavior of floating ice covers.

Linear (creep strain rate proportional to the applied stress) viscoelastic constitutive
relations for floating ice plate deformations were employed by Vaudray and Katona (1975),
Vaudray (1977), Novel (1976), Fransson (1985) and Hui (1986). Finite element analyses of
the non-linear flexural creep behavior of floating ice plates have been reported by Tinawi
and Murat (1978), Swamidas et al. (1978), Masterson and Strandberg (1979), Hamza and
Muggeridge (1982), Murat and Degrange (1983) and Tinawi and Gagnon (1984).
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However, most of the results presented are only valid for homogeneous floating ice
sheets, although in actual floating ice plates, Young’s modulus may vary strongly with
depth (Kerr and Palmer, 1972). Further, only secondary creep solutions have been obtained
in most cases and the important influences of primary creep deformations have not been
considered. The study of primary creep deformation is important because in many cases of
practical interest, failure (deflections exceed the freeboard) strains are small and therefore
occur in the primary state of creep (Frederking and Gold, 1976; Duval et al., 1981 ; Ponter
et al., 1983). This paper is the first in the literature to report the non-stationary primary
creep behavior of floating ice beams, taking into account the non-homogeneity of the
material and shift in the neutral axis as a function of time.

The power type constitutive relation was modified to include a time hardening expon-
ential function suggested by Assur (1979). The exponential function and hence the strain
rate has a minimum value at time 7 = [, so that 7 < [, corresponds to primary creep and
7 > I, corresponds to tertiary creep (7, is reference time). The governing differential equation
for the non-stationary creep response of a floating ice beam is derived and it is solved using
a central finite difference scheme. Time integrations of the deflections and stresses are
performed using Euler’s integration procedure with a variable time step. As an example
problem, the creep behavior of a simply supported floating ice beam subjected to a sinusoidal
load (Xirouchakis, 1981) is examined. The effect of time hardening on the creep response
is to increase the deflection in comparison with the secondary creep case and in general,
further relax the stresses with time.

Unlike the case of a homogeneous beam (constant Young’s modulus across the beam
thickness), the axial stresses of a non-homogeneous beam may initially rise with time and
then relax with time later on. The neutral axis (that is, the zero axial stress axis) does not
change with time for a homogeneous beam and it changes with time for a non-homogeneous
beam. The location of the neutral axis as well as the stress profile across the thickness are
updated for each time step. Special precautions are taken on the choice of the time step to
ensure correct convergence of the deflections and stresses. In passing, the shift of the neutral
axis as a function of time for a beam without foundation subjected to constant end moment
was examined by Findley ez al. (1958) and summarized in his text (1976).

The time hardening constitutive relation is employed in the present analysis. However,
the strain softening rule is used by a number of authors (Wang, 1983; Chen et al., 1985)
to predict the creep response of sea ice at low and high strain rates. The strain hardening
rule was used by Hamza (1981) to predict the viscoelastic response of uniaxially loaded
compression and tensile test specimens and good agreement was obtained between the
numerical results and experiments (Mellor and Cole, 1982). A comparative study of the
various constitutive relations which are applicable for the creep bearing capacity of ice is
in progress.

2. ELASTIC RESPONSE

The elastic solution will provide the initial condition for the creep behavior of floating
ice beams. The beam on a linear elastic liquid foundation (considered as a Winkler-type
support) is subjected to a lateral distributed force per unit length P(X) and a concentrated
force P at the beam center. Further, only loads smaller than the corresponding elastic
failure loads are of interest.

The potential energy of the floating ice beam subjected to lateral loads (Hui and
Hansen, 1980a ; Hui, 1986a, b)

L2
PE. = f (D B/2)(W,xx)* + (K /W~ W P} dX~F- W(X=0) (I)
/2

X=~L

where W is the lateral deflection, X is the axial coordinate measured from the beam center,
L and B are the length and width of the beam, respectively, K, = pgB and pg is the liquid



Non-stationary creep behavior of floating ice beams under lateral loads 1487

foundation modulus. The effective flexural rigidity D, is defined as

H-Z,

D, = f Z2E(Z) dZ (2a)

z=-2,

where H is the beam thickness, Z, is the distance from the neutral axis to the top fiber of
the beam and Z is the transverse coordinate measured from the neutral axis, positive
downward. Young’s modulus as a function of Z across the ice thickness is specified by
(Kerr and Palmer, 1972)

E(Z)/Eq = 1-(1-a)[(Z/H)+(Z,/H)]". (2b)
In the above expression, E; is Young’s modulus of the top fiber and the Young’s modulus

parameters a and b are non-dimensional positive constants (0 < a < 1). Since the axial
stress &, is related to the bending moment M, by

¢, = (M,/D\)ZE(Z) (20)

the quantity Z,/H which specified the location of the neutral axis is obtained by setting to
zero the integral of ZE(Z) through the beam thickness so that

b+2a)(b+1)

ST ) v

Based on the above Young’s modulus profile, the non-dimensional effective flexural rigidity
can be expressed in terms of @ and b in the form (z = Z/H)

4

d, = 12D ,/(E,H?) = 12<(b+3a) - (b+2a)(z0) (b+a)(zo)2).

3b+3) b+2 b+1
The following non-dimensional quantities are introduced :
A= [4E010d|/K1]”4 = (4BDI/KI)U4
w=WH/Z, x=X/4  (x=U/H() &)
p(x) = HA'P(X)/(D,B) = 4HP(X)/(K,1%)
f= HAF/(D,B) = 4HF|(K,2%)

where / is the characteristic length (Hetenyi, 1946) and /, = BH*/12. The governing differ-
ential equation can then be obtained from the potential energy with the aid of calculus of
variations in the form

Wisaxx +4W = p(x) (6)

where p(x) is an arbitrary function of x. The associated boundary conditions at one end of
the beam (x = + L/(2A)) are

w=10 or W, =0

@

w,, =0 or w,=0.

Furthermore, assuming that the loading function p(x) is symmetric with respect to the beam
center, the boundary conditions at the beam center (x = 0) are

Wia(x=0)=0, W (x=0)=/2 @®



1488 D. Hui er al.

where the forced equilibrium requirement (that is, the reaction forces over the entire beam
are equal to the total applied lateral force) is employed.

In passing, a similar analysis of plates on elastic foundation can be performed using
the energy expression obtained by Hui and Hansen (1980b).

3. NON-STATIONARY CREEP RESPONSE

The constitutive power law for uniaxial creep of ice was introduced by Glen (1955)

and an extension to include a time hardening exponential function was suggested by Assur
(1979). It takes the form

& = K|g|" sign (d)g(1) (9a)

g1y = [(1/0) exp (=Y (9b)

where ¢ = i/I,, 7 and 7, are time and reference time, respectively, () = d( )/dt, & is the creep
strain rate, & is the axial stress and sign (§) =1for §2 0 and sign (6)= —1 for 6 < 0.
Note that time 7 = 0 refers to the elastic state just prior to the creep behavior. The time
hardening function g(¢) is unity for the time hardening exponent being zero. Further, the
function g{r) decreases as time increases for 1 < 1 and it increases with time for 1 > 1; the
minimum value occurs at g(fr = 1) = 1. Other viscoplastic constitutive laws are possible
(Hui and de Oliveira, 1986) and a thorough discussion on the constitutive laws for ice can
be found in the papers by Morland (1979), Christensen (1982), Szyszkowski et al. (1985)
and Xirouchakis and Wierzbicki (1985), among others,

For a time-independent stress and no time hardening, the above strain rate expression
can be integrated to yield

I = ¢*{[K|6|" sign (6)]. (10
The reference time may be found by selecting a nominal value of the stress ¢ and strain ¢.

Here, & is chosen to be the elastic axial stress at the beam center bottom fiber and £ is
chosen to be the elastic strain at the same location, that is

66, =6(t=X=0,Z=H-Zy)| =|(H-Z)@E)W,xx(i=X=0)| (lla)
& — 6p/(aky) (11b)

where aE, is Young’s modulus at the bottom fiber. Thus, the reference time becomes
I, = 1/(@EoK|G "™ 1). (12)
The choice of this reference time is quite arbitrary since one can choose the creep parameter
K in the constitutive equation to fit the experimental data. However, this reference time has

proven to be advantageous in certain creep buckling problems (Obrecht, 1977).

The above power law can be generalized to multi-axial creep with the aid of Prandtl-

Reuss equations of incremental plasticity (Odqvist, 1976 ; Palmer, 1967)

& = s, 3K/2)(6)" 'g(0)- (13)

In the above expression, € is the creep strain rate and the stress deviator 5;; and the effective
stress G.¢ are defined by

Sij = 6;— (6/3)(6 11+ G2+ d33) (14)

(Ger)? =3J2= (1/D)[(en, —G33)? + (G2 —G33)  +(G33—011)’ +6(F1,+63:+61:)]  (15)
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where J, is the second invariant of the stress deviator and é,; = 1 for i = jand J;; = 0 for
i # jand subscripts 1, 2 and 3 correspond to the X-, Y- and Z-directions, respectively.

The total strain rate can be written as the sum of the elastic and creep components
(plastic strain rate is neglected)

The linear elastic strain rates for an isotropic material are

& = [(1+v)(340,) ~ v6,,6,}[6u/E(Z)] an

where v is Poisson’s ratio. Furthermore, for small deflections, the total strain rates &; can
be expressed in terms of the deflection rates in the form

éij == ""‘Z;i/,,'j. (18)

For a beam, 64, = 635 = G, = §;3 = &3 = 0 so that 4 = &,, and the elastic strain
rate becomes

& = —ZW,xx—KI6I" sign (§)g(?) (19)
and the bending moment rate is defined as (M,, = 0 and M, = 0)

H—Z,

H-Z,
M, = J. ZE(Z)&, dZ = — D W,y —Kg(1) sign (6) ZE(Z)le]" dZ. (20)

2=~ 2y z=-2,

Moreover, the governing differential equation for a beam attaching to a liquid elastic
foundation is

K, W"‘BMn,xx=P(X) 2n

which can be re-written in the form
Y . -20 -
BD\Wyyxx+ K \W =P (X)—BKyg(1) sign (6) L Z (61", xxZE(Z) dZ. (22)
w —deq

Introducing the non-dimensional stress defined by o = 6/d, and from now on () = d( )/dt,
one obtains the governing differential equation for the non-stationary creep problem
(t=1t,z=2Z/H)

-z,

Waxxxs +4W = P(x) — ¢, sign (o) (Io1"),xx2E(Z)/E, dz (23a)

e —z,
where
co = [12/(ad))]g(1)(dv/Eq). (23b)
Furthermore, the non-dimensional stress rate can be computed from
& = [E(Z)/Eo]l — 2¥,xx(Eo/dv) —sign (6)g(D(o1"/a)] (24a)
where the elastic stress at the beam center bottom fiber is

Gv/Eo = |a(l —zo)W,xx(t = x = 0))]. (24b)
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The boundary conditions at the beam center are

W (x=0)=0 (25a)

i-:

(o(x = O)),zE(Z)/E, d=.  (25b)

=

wsxxx(-x = 0) = (f/lz)_co Sign (0’)\[

At the beam end, the boundary condition related to zero slope-rate or zero moment-rate
conditions is

W, (v = Lj(24)) = 0 (26a)
or

-z

Wia(x = L[(24)) = —¢, sign (G)J lo(x = LIQA)ZE(Z )/E, dz (26b)

7=~z
while the one related to the zero deflection-rate or zero shear force-rate condition is
w(x = L/(24)) = 0 (27a)

or

Woeee (¥ = L/(22)) = —cq sign (a)f_—zf (loGx = Lj@aNM.azE(Z)Eo dz.  (27b)

4. NUMERICAL SCHEME

The governing fourth-order differential equation in the deflection rate w is discretized
using the central finite difference scheme with N (approximately 51) grid points from x = 0
to L/(24), assuming that the loading is symmetric with respect to the beam center. It should
be cautioned that the numerical solution of the governing equation is complicated by the
fact that as time tends to 0%, the creep strain rate becomes infinite. In order to deal with
this problem, the stress ¢ (defined to be 6/6,,) is taken to remain unchanged from its elastic
value at ¢ = 0 for a sufficiently small value of the first time step at t = Az (Obrecht, 1977).
The integration across the thickness is performed using Simpson’s rule with approximately
Ju =9 and J. = 15 integration points across the upper (above the neutral axis, z = —z,
to 0) and lower portions of the beam, respectively. The discretized linear non-homogeneous
equations are solved using a Gaussian elimination equation solver LINPACK (Dongarra
et al., 1979 ; Hui, 1984). Further, the non-dimensional stress-rate vector, being a function
of both the x- and z-coordinates, is computed based on the displacement-rate vector w and
the stress matrix ¢ (function of both x and z). Time integration for the deflection and
stresses is performed using Euler’s integration scheme

wit=1t)=wt=1t_)+@ow(t=1_,) (28a)
o(t=1t)=o0(t=1t,_,)+(AN0(t = t,_,) (28b)

where t;is the current time and ¢;_ | is the previous time (¢; = t,_,+ Af). The above procedure
is repeated for the next time increment until the deflection vector w(¢, x) reaches the
asymptotic value as time tends to infinity or the deflection exceeds the plate thickness. Note
that as time tends to infinity, the beam relaxes completely and the load is fully carried by
the underlying liquid foundation so that the second derivative of the moment M,,, vanishes.

The above procedure may be quite time consuming since the chosen uniform time step
At has to be sufficiently small in order that the solution can converge. In most creep
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problems, it is desirable to have small time step near ¢ = 0 while a relatively coarse time
step will suffice for large time. A variable time step was suggested based on the proposition
that the incremental effective creep strain should be very much smaller (say @ = 4%} than
the effective elastic strain (Sutherland, 1970 ; Shimizu, 1974, Section 6.2). In this case, the
time step is given by

At = afllo(t = 1, x, 2)I"'Kg(t = 1)E(Z)}. (29)

The above minimum time step occurs at the beam center top fiber so that one may set
EZ)=Eyjando(t=t, x,2)=0(t=1, x =0, z= ~2z,). In non-dimensional form, the
time step becomes

At = (@)/[g(t = ot =1, x =0,z = —z5)""] (30)

where ¢ = /G, and G, = |6(t =0, x = 0, z = 1 —zy)|. As a check on the validity of the
above time step, the alternative expression is given based on the work presented by Cormeau
(1975)

AL S H[BEK)git=)nlé(f=1, X =0, Z= - Z)|"" '] (Y
or in non-dimensional form
AL < (Aa)/[Bmg(t = t)lo(t =1, x =0, z = —2zy)I"" '] (32)

Since the factor &« = 0.04 is less than 4/(3n) for n < 33 (it takes the value 1.33 and 0.444 for
n =1 and 3, respectively), it can be seen that the present time step satisfies the stability limit
requirement reported by Cormeau.

Since the time hardening exponential function g(f) is infinite at ¢ = 0, the value of
g(t = t,) is taken to be unity in the computation of the first time step At,. This assumption
is necessary in order to avoid numerical difficulty and the specification of the factor « is
required in formulating the numerical solution.

5. ELASTIC SOLUTION OF A BEAM UNDER A SINUSOIDAL LATERAL LOAD

As an example problem, the creep behavior of a simply supported floating ice beam
subjected to a sinusoidal load is examined. Among the numerous possible loading con-
figurations, the sinusoidal load is the simplest possible distributed load (Hetenyi, 1946 ;
Flugge, 1975) where the closed form solution for the elastic response can be found. Further,
the possibility of “lift-off”” between the ice and the liquid foundation is avoided for all
times. Of particular interest is the investigation of the effects of variations of the time
hardening exponent f and Young’s modulus parameters a, b on the non-stationary creep
response of floating ice beams.

The applied sinusoidal load as a function of the axial coordinate X (in the shape of a
half sine wave) is

P(X) = @ sin [(X/L)+ (n/2)] (33)
or in non-dimensional form
p(x) = g sin [mx+ (r/2)] (34)
where it = n)/L and ¢ = QHA*/(D,B). The total force on the structure can then be com-
puted from

L/2
J P(X) dX = gK,A%/(2mH) = 2qLD B/(A*nH) =2QL/n. (35

X ™ —Lj2
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Thus, the clastic defiection and the clastic stress are
w(t = 0) = [g/(m* +4)] sin [rax + (r/2)] (36a)

52

a(t =0, x, 2)/6y = [~ 2E(Z)/Gy}w,(1 = 0) = [ZE(Z)/ffb](;.!%) sin [rix +(n/2)].
(36b)

Further, the elastic stress at the beam center bottom fiber is (x = 0, z = 1 -z, and note
that E(z = 1 —z¢) = aEy)

Go/Eq = la(1—zo)qrit’|{ (" +4) (37)

so that by equating &, to the failure stress &, the value of ¢ for instantaneous elastic failure
is

it +4)(6,/E,
The above expressions can be re-arranged into the form
5 1B .
w(t=0) = ((?q(/]ﬂ.)f(g;},%)) sin [mx + (n/2)] 39)
E(Z)JE
o(t =0) = (E;({t)_iﬁd) sin [rix + (n/2)] (40)
6v/Eo = (9/qr)(6t/Eo)- (41

6. DISCUSSION OF RESULTS

The floating ice beam under a sinusoidal load is assumed to possess a linear variation
of Young's modulus across the thickness (so that & = 1) and the creep exponent is taken
to be 3. Due to the large number of parameters involved in this paper, only the following
four cases will be examined:

(i) homogeneous short beam (a = 1, L/(An) = 0.2);

(ii) non-homogeneous short beam (a = 0.25, L/(in) = 0.2);
(iii) homogeneous long beam (a = 1, L/(Axn) = 1.0);
(iv) non-homogeneous long beam (a = 0.25, L/(in) = 1.0).

It is hoped that these cases represent an unbiased parameter study of the creep problem.

Figure 1(a) shows a graph of central deflection (normalized with respect to its-elastic
value at the beam center) vs non-dimensional time #/7; for a floating homogeneous short
beam. The time being considered involved both the primary creep (/7; < 1) and the tertiary
creep (f/7, > 1) ranges. It can be seen that as the time hardening exponent § is increased,
the deflections also increase. For sufficiently large time, the beam relaxes completely and
the load is fully carried by the elastic foundation. The asymptotic value of the deflection
for large time can be obtained from

wt—> o, x=0) g/4

—_ -4
Wi=x=0) “wi=x=0 T/ (42)

Further, the value of the load intensity 4 has no effect on the present non-dimensional
deflections since the factor g cancels out when one divides the deflection by its initial (r = 0)
value.
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Figure 1(b) shows a plot of the axial stress at the beam center extreme fiber (again
normalized with respect to its elastic value) vs #/7, for a floating homogeneous short beam.
As the time hardening exponent f increases from 0 to 1.0, the axial stresses further relax.
Further, the stress rate decreases with time in the primary creep range and increases with
time in the tertiary creep regime. Again, the value of ¢ has no effect on these curves. Figure
1(c) shows the stress profiles across the beam thickness at the beam center of a homogeneous
short beam for various values of #/7; with no time hardening. Note that the stress profile is
linear at ¢ = 0 and it relaxes with time,

In order to estimate the failure time based on a given value of the applied load g/q;, it

witix£0)
Ttexa HHtax=0)
Wit=x=0) FHiex20)
K 1o

2'0r-

azl, L/(\*)=02
a=00i
ASYMPTOTE = |572

5t asls  L/Axw)=202
e=00l, z=:05

3 ) 36 30 40 50 !

or
3
™
o
o
O
N
o
g‘

(a) O

24205 FOR ALL TIME

. S . . Atxs0)
-0 -5 X 5 10 &t=x=0)

o=, L/AAw)=02 .
B0 -3 N

©

Fig. 1. (a) Normalized deflection vs non-dimensional time for floating homogeneous short beams.
(b) Nonnahz_ed stress vs non-dimensional time for floating homogeneous short beams. (¢) Nor-
malized stress profile at the beam center for floating homogeneous short beams.
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005,
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Fig. 1. (d) Load factor R vs failure time for floating non-homogeneous short beams. (¢) Initial
deflection rate vs non-dimensional time for floating homogeneous short beams.

is desirable to rearrange eqn (39) into the form

wit=1t,x=0) a(l —z)*w(t = t;, x = 0) (3)
w(t=0x=0) (9/g0)(6+/E,)
2.5r wit,x=0)

w(tzx=0)

2.0r

0=0.25 , L/(ar)=0.2

1.0 L L - —— g
0.0 0.5 1.0 L5 20

Fig. 2(a). Normalized deflection vs non-dimensional time for floating non-homogeneous short
beams.
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Fig. 2(b) (i) and (ii). Normalized stress vs non-dimensional time for floating non-homogeneous
short beams.

so that the load factor R may be plotted against the failure time ¢, where

RA (9/90(61/Es) (@) (1 — zo)ri?
Twt=t,x=0) [wit=1t x=0/wit=x=0)]

(44)

Figures 1(d) and 2(d) show that as the time hardening parameter f§ increases for a fixed
value of the load factor R, the failure time decreases. Since there exist upper bounds for

\ \ -4}
N A
e, AN \ -3
g N \‘
IS -2
TN
AN -t &(1,x20)
LN N o)
720 <10 NS 6
Mg~ JoNT

6:0.25 , L/{ir)=0.2

B+0.0

3
4
5
]

Fig. 2(c). Normalized stress profile at the beam center for floating non-homogeneous short beams.
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Fig. 2(d). Load factor R vs failure time for floating non-homogeneous short beams.

the deflections, all these curves will asymptote to certain lower bounds (as specified in the
figures)

_ (@)1 —zo)m’
LB. = T+ ) (45)

As expected, Fig. 1(e) shows that the strain rate and hence the deflection rate decreases
with time in the primary creep range whereas it increases with time in the tertiary creep
regime for a homogeneous short beam. The deflection rate increases significantly as time
tends to infinity or time tends to zero for § = 1.0. The effects are less pronounced for
f =0.15and 0.5.

For a non-homogeneous short beam (a = 0.25, L/(An) = 0.2), Fig. 2(a) shows that the
above observations are still qualitatively valid in the time range /7, < 2.0 being considered.
Unlike the homogeneous beam, Fig. 2(b) (i) shows that the stresses at the beam center top
fiber are found to relax with time much more rapidly than the bottom fiber. In fact, the
stresses at the bottom fiber for a non-homogeneous short beam actually increase slightly
with time initially and then decrease with time. A magnified view of these curves for a
shorter time range is presented in Fig. 2(b) (ii).

Judging from the stress profile across the beam center thickness, Fig. 2(c) shows that
in the absence of time hardening (8 = 0), it is evident that the stresses do not necessarily
relax with time near the bottom portion of the ice beam. Further, it should be emphasized
that the stationary creep solution is not assumed in the present study. Indeed, since the
ratios of the stress between the top and bottom fibers at the beam center for various times
are not constant, the creep solutions for non-homogeneous beams (Fig. 2(c)) are not
stationary even though they are stationary for homogeneous beams (Fig. 1(c)). For non-
homogeneous short beams, the top fiber relaxes much more with time than the bottom
fiber.

In order to assess the initial deformation and stress behavior in the vicinity of t = 0,
the deflection rate and the stress rate at t = 0 are obtained in the following closed form (see

the Appendix)
w(t =0, x = 0) < 3 9 )( 3m*A, >
= 46
w(t =0, x = 0) a8 14/ \da(1—zo)° (46)
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, 2E(Z)/Eq 3 81 \(34,m*
9(t=0,x=0,2= <a“(1 —zo)’>{<m‘+4 + 81rh‘+4>< d, )‘ZZ[E(Z)/E°]3}

(47)

where

A, = J‘H" [ZE(Z)/E)" dz. 8)

~2zq

The deflection rate and the stress rate at the beam center at z = 0 vs L/(Ar) for homogeneous
and non-homogeneous beams are shown in Figs 3(a)—(c). It can be seen that the magnitude
of the initial deflection rate at the beam center as well as the magnitude of the initial stress
rate (at beam center top and bottom fibers) are much higher in the non-homogeneous beam
than those in a homogeneous beam. Note that the axial stress is positive (tension) below
the neutral axis and negative (compression) above it. Thus, of particular interest is the fact
that the initial stress rate at the beam center bottom fiber for a non-homogeneous beam
(except for a very long beam where L/(An) > 2.5 in which it asymptotes to — 1.0) is positive
which indicates that the magnitude of the stress increases with time at least for sufficiently
small time.

Finally, the typical stress profile at the beam center (normalized with respect to its
elastic value at the beam center bottom fiber) for a floating homogeneous long beam is
shown in Fig. 4(a). Comparing the stress profiles between homogeneous long and short
beams (Figs 4(a) and 1(c)), the axial stress near the neutral axis does not change significantly
with time for a long beam whereas it changes for a short beam.

The stress profiles of a non-homogeneous long beam at the beam center (Fig. 4(b))
and a non-homogeneous short beam (Fig. 2(c)) have different trends. The maximum tensile
and maximum compressive stresses decrease in magnitude with time for a non-homogeneous
long beam. On the other hand, for a non-homogeneous short beam (Fig. 2(c)), the maximum
tensile stress (below the neutral axis) increases slightly with time initially and then decreases

a(tsn=Q)
wit, xs0) kor
wl(tsx:0) P
6 o
osh
5.
a= 10
4 -
G Ao i L
05 [X*] 5 20 v
3\-
2t o5t
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| b
+OF
o]
(@) (b)

Fig. 3. (a) Initial deflection rate vs non-dimensional length parameter for a = 0.25 and 1. (b) Initial
stress rate vs non-dimensional length parameter for floating homogeneous beams (a = I, x = 0,
t=0).
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Fig. 3(c). Initial stress rate vs non-dimensional length parameter for floating non-homogeneous
beams (@ =0.25,x=0,1=0).

subsequently and the maximum compressive stress (above the neutral axis) decreases with
time. Thus, the stress relaxation behavior is quite different between long and short beams.

Figure 5(a) depicts a graph of the shift of the neutral axis at the beam center vs 7/7, for
non-homogeneous long and short beams with no time hardening. Note that the neutral axis
does not change with time for a homogeneous beam. The neutral axis tends to shift from
zp = 0.4 (based on a linear variation of Young's modulus with a = 0.25) at ¢ = 0 to a value
close to 0.5. The short beam is more sensitive to the shift in the neutral axis with time than
the long beam.

Finally, typical shifts of the location of the neutral axis as a function of the axial
coordinate for various values of 7/7, are shown in Fig. 5(b). It can be seen that for a large
value of the axial coordinate (where the lateral load is much smaller than at the beam
center) the axial stresses are smaller than that at the beam center and the neutral axis

remains approximately unchanged at z, = —0.4.
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Fig. 4(a). Normalized stress profile at the beam center for floating homogeneous long beams.
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Fig. 4(b). Normalized stress profile at the beam center for floating homogeneous long beams.
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Fig. 5(b). Location of the neutral axis at the beam center vs non-dimensional time for non-
homogeneous long and short beams (neutral axis is independent of time for homogeneous beams).
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7. CONCLUDING REMARKS

The non-linear creep behavior of floating ice beams is examined. It is found that the
effect of time hardening in the power-type constitutive relation is to increase the deflection
and further relax the stresses. The strain rate (and hence the deflection rate and the stress
rate) decreases with time in the primary creep range (i/f, < 1) whereas it increases with time
in the tertiary creep regime (f/f, > 1). While the trends in the deflections between the
homogeneous and non-homogeneous beams are qualitatively similar, the stresses and stress
profile display a significantly different trend. In fact, the stresses do not necessarily relax
with time initially for a non-homogeneous beam. The neutral axis is found to change with
time for a non-homogeneous beam and it is independent of time for a homogeneous beam.
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APPENDIX: DEFLECTION RATE AND STRESS RATE AT (=0 FOR A SINUSOIDALLY
LOADED BEAM

This section aims to obtain analytically the deflection and stress rates at 7 = 0 for a non-homogeneous floating
ice beam subjected to a sinusoidally distributed load. A linear variation of Young’s modulus profile is assumed.
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In order to avoid analytical complications, the creep exponent n is restricted to the value 3 and the load rate is

set to zero.

The governing differential equation for the deflection rate is (for » odd, sign (¢) = | and the absolute value

sign on the stress can then be removed)

i-

M"‘uur:u: +a4w = COJ K (U”)’xx(z)E(Z)/EO dz

—z4

where

L _120y/E)
0 ad,

glt=0)=1.
The elastic deflection and the elastic stress are
w(t = 0) = [g/("* +4)] sin [rfix + (x/2)]

PRy
o(t =0, x, 2) = 6(t = 0, x, 2)/Gy, = (5‘5—(?/%4]"’1) sin [ix+ (1/2)]

(Al)

(A2)

(A3)

(Ada)

(Adb)

where 6, = (aEo)(1 —-z,)(grA%)/(ri* +4). Substituting the elastic stress into the above differential equation, one

obtains

- 124, E L
W,yxx +4W = (ﬁ){[sm (rix+ (7/2)]"},2x

where

i-zq
A, =J (2E(Z)/Eo*' dz

-z

Ay = A*C +44%(a—1)C;+64%(@—1)Co+4A4(a—1)’C,+(a—1)*C,

and the constants C,, Cs, Cs, C;, Cy and A are defined by

1-z
c,=f "Zdz,  A=l+(@@=1D)

~15

Creep exponent n =3
Using the trigonometric identity

sin® pix+ (n/2)] = (3/4) sin [x + (n/2)] — (1/4) sin [3x + (31/2)]
the differential equation becomes
Wisexs +4W = (Bo){—3 sin [x+ (n/2)]+9 sin [3rix+ (3n/2)]}
where

B = (—34,1%)(64/Eo)
0 dia* 1~z

The solution which satisfies the boundary conditions is of the form
w(t = 0) = B, sin [rAix+ (n/2)}+ B, sin [3mx+ (3n/2)].
Substituting the assumed form of the solution into the differential equation, one obtains

B, = (—3By,)/(m* +4)
B, = (9B,)/(BLii* +4).

Thus, the deflectionrate at 1 = 0, x = 0 is

Wt=0x=0__ B-B _( 3 9 3m*A,
wit=0,x=0) w(t=0,x=0) \a*+4 Blm*+4/\da’(1-2,)?)

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

(Al

(A12)

(Al13)

In order to obtain the stress rate at 7 = 0, the above deflection rate is substituted into the stress rate expression

(¢ = 0) = 6(1 = 0)/6, = [E(Z)/Eo}{ ~2(Eo/G)W,.s(t = 0)~[0(t = 0)*/a]}

(A14)
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so that (upon evaluating at the beam center x = 0)

. o (2E@)E, 3 81\ (/34,7
9(t=0,x=0, z)"(a‘(l—zo)’>{(m‘+4+81m‘+4>( 4, )‘22[5(2)/5"]3}' (ALS)

The deflection rate and the stress rate at 1 = 0 for the two different beams considered in the present study are
summarized in Table Al (note that 4; = 0.0125 for the homogeneous beam and A; = 0.001907 for the non-
homogeneous beam).

Table Al
Homogeneous  Non-homogeneous  Homogeneous  Non-homogeneous

short short long long
w(t=0,x=0) 0.46380 5.7190 0.10588 1.3056
w(t =0, x =0)
d(t=0,x=0,2z= —z) 0.40287 56.217 0.76706 68.192

top fiber

6(t=0,x=0,z=1-2,) —0.40287 6.3629 —0.76706 1.8723

bottom fiber




